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Pancreatic cancer has a dismal 5-year overall survival despite modest improvements in systemic chemotherapeutic regimens in recent 
years. Several new and promising agents are being tested in pancreatic cancer; these agents can be divided into three categories: immune 
therapy, molecular targeted agents, and stromal targeted agents. The unprecedented success of immune checkpoint inhibitors in several 

tumor types has not been observed in pancreatic cancer due to the unique, profoundly immunosuppressive tumor microenvironment. Despite 
failure of single-agent immune checkpoint inhibitors as a therapeutic option, a concerted effort is underway to further characterize the reasons 
for lack of response and to develop combination strategies to overcome the resistance. Molecular characterization of pancreatic cancer has 
led to the discovery of new molecularly-targeted therapeutic options in certain subgroups of patients, such as microsatellite instability-high 
tumors and BRCA-mutated tumors. Therapeutic approaches targeting DNA damage deficiency, cancer stemness, and mitochondrial energy 
metabolism are being tested in clinical trials. Pancreatic stroma and tumor microenvironment impact drug delivery and promote tumor growth 
and metastasis. Agents targeting the tumor microenvironment are being tested in combination with cytotoxic chemotherapy. This review will 
detail these novel agents and the encouraging results from early-phase clinical trials.
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Pancreatic cancer is estimated to become the second most common cause of cancer-related death 

by 2030, and most common by 2050 in the USA.1,2 Pancreatic cancer results in approximately 331,000 

deaths annually worldwide, making it the seventh most common cause of cancer-related mortality.3 

More than 90% of all pancreatic cancers are pancreatic ductal adenocarcinoma (PDAC).4 For all 

stages combined, PDAC has a very poor 5-year overall survival (OS) rate of 8%.5 Despite significant 

improvements in survival rates in many cancer types, PDAC death rate has increased in recent years.5 

Recent advances in chemotherapy regimens have had a modest impact on median OS, which ranges 

between 8.5–11.1 months.6,7 Development of novel systemic therapies to overcome the resistance of 

PDAC is an urgent need. This article aims to provide an in-depth review of the literature around novel 

treatment strategies and ongoing research in pancreatic cancer management.

Overview of current systemic treatment approach to pancreatic 
ductal adenocarcinoma
Single-agent gemcitabine had been the established cytotoxic chemotherapy option based on clinical 

benefit defined as improvement in disease-related symptoms in patients with metastatic pancreatic 

cancer.8 The median OS with single-agent gemcitabine is 5.6 months. Several randomized trials 

combining different agents with gemcitabine have failed to provide any survival benefit.9–12 However, 

there have been some successful gemcitabine combinations; in a double-blind international phase 

III study, a statistically significant OS benefit was shown by gemcitabine plus erlotinib combination 

compared to gemcitabine plus placebo, 6.2 versus 5.9 months.13 Significant improvements in median 

OS have also been observed in two randomized trials – ACCORD 11 and MPACT (Metastatic Pancreatic 

Adenocarcinoma Clinical Trial) – both of which established the modern treatment regimens in the 

front-line setting.6,7 The ACCORD 11 trial compared FOLFIRINOX regimen (leucovorin, fluorouracil 

[5FU], irinotecan, and oxaliplatin) to single-agent gemcitabine. Median OS was 11.1 months versus 

6.8 months, respectively. The multinational MPACT trial compared gemcitabine plus nab-paclitaxel 

combination to single-agent gemcitabine in newly diagnosed metastatic pancreatic cancer. 

Median OS was 8.5 months versus 6.7 months, favoring the combination arm. Both trials showed 

increased toxicities with the combination chemotherapy regimens as compared to gemcitabine. 

The current second-line treatment option was established by the NAPOLI-1 trial, which compared 

a nanoliposomal irinotecan plus 5FU combination to single-agent nanoliposomal irinotecan or 5FU 

in patients who were previously treated with gemcitabine-based chemotherapy.14 Median OS was 

6.1 months in the combination arm, compared to 4.2 months with single-agent 5FU.15 More recently 
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pembrolizumab was approved for microsatellite instability-high (MSI-H) 

tumors in the second-line setting based on data from 149 patients across 

five single-arm clinical trials.16

Other cytotoxic chemotherapy agents are being explored in clinical trials. The 

phase I/II NAPOX trial combined nanoliposomal irinotecan, 5FU/leucovorin, 

and oxaliplatin in the first-line setting, and reported promising anti-tumor 

activity – six partial responses in 24 patients in one cohort.17 Clinical trials with 

cytotoxic chemotherapy combinations such as gemcitabine, capecitabine, 

cisplatin, irinotecan and trifluridine/tipiracil, and nanliposomal irinotecan are 

underway (ClinicalTrials.gov identifier: NCT03535727).18

Despite modest improvements in OS with cytotoxic chemotherapy, the 

5-year OS of PDAC is still 8% and there is an urgent need for novel, effective 

systemic treatment approaches.

What systemic therapies are there on the horizon 
beyond cytotoxic chemotherapy?
Molecular characterization and genomic profiling of PDAC has led to 

a better understanding of the disease and currently there are more 

than 150 actively accruing clinical trials with novel agents exploring 

new treatment options and breakthroughs. These novel clinical trials 

focus on immune system, targeted therapy, pancreatic stroma, and 

tumor microenvironment. Promising targets for therapy in pancreatic 

cancer include driver oncogenes, DNA repair pathway, stem cell, and 

metabolomic pathway.

Emerging therapeutic targets for pancreatic cancer
Immunotherapy
Immunotherapy with anti-programmed cell death protein 1 (PD-1), 

anti-programmed death-ligand 1 (PD-L1), and anti-cytotoxic T-lymphocyte-

associated protein 4 (CTLA-4) antibody treatment has become standard of 

care in several malignancies; however, the outcomes in PDAC with single 

agent or dual immune checkpoint inhibitors have been disappointing.19,20 

The profoundly immunosuppressive tumor microenvironment of PDAC, 

dense stroma, inhibitory cytokines, low effector T-cell, and low mutational 

tumor burden have been implicated in the failure of immunotherapy in 

pancreatic cancer.21,22 Additionally, the PDAC tumor microenvironment is 

infiltrated with immunosuppressor elements, such as myeloid-derived 

suppressor cells, tumor-associated macrophages (TAMs), and neutrophils. 

Patients with PDAC and high CD8 T-cell infiltration or neoantigen numbers 

have been shown to have longer survival.23 Presence of higher effector 

T cells and lower alternatively activated macrophages (M2) are also 

associated with longer survival.24,25 Other than in subgroups of patients 

with PDAC with MSI-H tumors, use of checkpoint inhibitors in PDAC is 

still investigational.

Microsatellite instability-high subgroup
Approximately 1% of patients with PDAC have MSI-H-positive disease.26 The 

immune checkpoint inhibitor pembrolizumab has shown a 53% objective 

response rate (ORR) across 12 solid tumor types, including pancreatic 

cancer.27 Pembrolizumab is currently approved for this indication in the 

second-line setting.27 Currently, a phase I study with anti-PD-L1 antibody 

LY3300054, alone or in combination with other agents, is enrolling patients 

with treatment refractory MSI-H solid tumors, including pancreatic cancer 

(ClinicalTrials.gov identifier: NCT02791334).

Immunotherapy and stromal targeting agents
Two main approaches to enhance immune therapy effects in PDAC, 

are being evaluated. The first approach is aimed at enhancing the 

activity of the immune checkpoint blockade by adding agents that 

address the immune inhibitory environment. These include rational 

combination approaches with immunomodulatory chemotherapy 

agents, radiotherapy, and small molecular agents, focusing on the 

tumor microenvironment for a more immune-favorable state, improving 

antigen presentation, and decreasing regulatory T-cells (Table 1). In 

the second approach, investigators are evaluating immune therapy 

approaches that do not include checkpoint blockade.

Table 1: Selected ongoing clinical trials with checkpoint inhibitors combined with other novel agents and treatment modalities

Mechanism of action ClinicalTrials.gov 

identifier

Agents Phase

Anti-PD-1/CTLA-4 NCT02311361 Tremelimumab +/- durvalumab + SBRT I/II

NCT02879318 Gemcitabine + nab-paclitaxel +/- durvalumab/tremelimumab II

CSF-1/CSF-1R axis NCT02713529 AMG 820 (CSF-1R) + pembrolizumab I/II

NCT02777710 Durvalumab + CSF-1R TKI (pexidartinib) I

CCR2/5 dual inhibition NCT03184870 BMS-813160 (CCR2 and CCR5) + nivolumab I/II

NCT03496662 BMS-813160 (CCR2 and CCR5) + nivolumab + gemcitabine + nab-paclitaxel I/II

CXCL12/CXCR4 axis NCT02907099 BL-8040 (CXCR4) + pembrolizumab II

HSP90 inhibitor NCT03095781 XL888 (HSP90) + pembrolizumab Ib

Anti-CD73 NCT03611556 Oleclumab (CD73) + chemotherapy + durvalumab Ib/II

Bispecific antibody NCT02650713 RO6958688 (anti-CEA/CD3) + atezolizumab Ib

Vaccines NCT03006302 Epacadostat (IDO) + pembrolizumab + CRS-207 with or without CY/GVAX II

NCT03153410 Pembrolizumab + cyclophosphamide + GVAX + IMC-CS4 (LY3022855) I

NCT02243371 GVAX and CRS-207 +/- nivolumab II

CD = cluster of differentiation; CEA = carcinoembryonic antigen; CCR = C-C chemokine receptor type; CSF-1 = colony stimulating factor-1; CSF-1R = colony stimulating factor-1 
receptor; CTLA-4 = cytotoxic T-lymphocyte-associated protein 4; CXCL = C-X-C motif chemokine; CXCR = C-X-C chemokine receptor; HSP = heat shock protein; IDO = indoleamine 
2,3-dioxygenase; PD-1 = programmed cell death protein 1; SBRT = stereotactic body radiation therapy; TKI = tyrosine kinase inhibitor.
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Checkpoint inhibitor-based combination approaches
Chemotherapeutic agents such as gemcitabine and cyclophosphamide 

have been shown to decrease regulatory T cells,28 which prompted 

early-phase clinical trials in combination with checkpoint inhibitors (Table 1). 

A combination of Gemcitabine plus tremelimumab was studied in a phase 

Ib trial in metastatic PDAC, and two partial responses were reported.29

DNA damage is the main mechanism of cancer cell death by radiotherapy; 

however, more recently, the immunomodulatory effects of radiotherapy 

have been recognized.30 Radiation induces the release of proinflammatory 

mediators and damage-associated molecules such as high mobility group 

box 1 (HMGB1), heat shock proteins, ATP, and calreticulin;31 upregulates major 

histocompatibility complex class I expression, dendritic cell activation, immune 

checkpoint expression; and increases antigen presentation, cytotoxic T-cell 

recognition of irradiated cells, immunomodulatory cytokines, and inflammatory 

mediators.32,33 The synergistic effects of checkpoint-inhibitor and radiotherapy 

combination have been demonstrated in preclinical studies, and combination 

approaches are being explored in ongoing clinical trials (Table 1).34

TAMs have immunosuppressive and tumor-promoting  features, and therefore 

have significant implications in carcinogenesis and progression of metastatic 

disease.35 TAMs and other myeloid cells secrete proangiogenic growth factors 

and immunosuppressive cytokines36 contributing to the immunosuppressive 

tumor microenvironment.35 TAMs can either have a proinflammatory (M1) or 

anti-inflammatory (M2) phenotype. An anti-inflammatory TAM M2 phenotype 

has immunosuppressive features and is associated with more aggressive 

tumors, increased angiogenesis, invasion, metastasis, and negative 

prognosis.37–39 The development of anti-inflammatory TAM M2 depends on 

growth factors such as colony stimulating factor-1 (CSF-1), also known as 

macrophage CSF. CSF-1 is activated by CSF-1 receptor (CSF-1R) and has 

crucial role in macrophage differentiation and survival.40 CSF-1R is expressed 

on myeloid-derived suppressor cells, neutrophils, and dendritic cells in 

the tumor microenvironment. CSF1-R mediated signals predominantly 

control the tumor promoting features of TAM; therefore, targeting tumor 

promoting CSF-1R is a viable anti-tumor strategy. Several clinical trials with 

CSF-R1 inhibitors in combination with checkpoint inhibitors, chemotherapy, 

and other immunotherapy agents are actively accruing patients (Table 

1). Chemokines mediate immune-cell trafficking between bone marrow, 

peripheral tissues, inflammatory sites, and the tumor microenvironment.41 

CCR2 and CCR5 are chemokine receptors that are expressed on myeloid 

cells in the tumor microenvironment and promote an immunosuppressive 

tumor microenvironment by recruiting inflammatory monocytes from bone 

marrow.42 CCR5 is also expressed on regulatory T cells and mediates their 

migration to the tumor microenvironment and promotes TAM M2 phenotype. 

Patients with PDAC with high C-C chemokine ligand (CCL)2 and low CD8 + 

T-cell infiltration have shorter survival compared to low CCL2 and high CD8 + 

T cells.43 Targeting the C-C chemokine receptor type (CCR)-2 axis with a CCR2 

inhibitor has been shown to increase effector T cells, decrease regulatory 

T cells, and decrease tumor growth and metastasis in murine pancreatic 

cancer models.43 Anti-tumor effect was further increased when CCR 

inhibition was combined with gemcitabine in the same murine model. Based 

on this preclinical study, the oral CCR2 inhibitor PF-04136309 in combination 

with FOLFIRINOX or FOLFIRINOX alone was studied in a phase Ib trial in 

borderline resectable and locally advanced PDAC.43,44 A partial response rate 

of 48.5% was reported with the combination therapy and treatment was 

tolerable.44 Investigation into a CCR2/CCR5 dual inhibitor in combination 

with gemcitabine, nab-paclitaxel, and nivolumab in borderline resecable or 

locally advanced PDAC is ongoing (ClinicalTrials.gov identifier: NCT03496662). 

A trial with CCR2/CCR5 dual antagonist in combination with chemotherapy 

or nivolumab is also ongoing in metastatic pancreatic and colorectal cancer.42

Tumor microenvironment and stroma
Dense stromal desmoplastic reaction is one of the hallmarks of pancreatic 

cancer tumor microenvironment.45 The fibrous tissue which constitutes the 

desmoplastic reaction is produced by pancreatic satellite cells. Pancreatic 

satellite cells also produce extracellular matrix proteins, cytokines, and 

vascular endothelial cells.21,46 The stromal desmoplasia is evident in both 

primary pancreatic tumors and metastatic tumor sites and creates a more 

hypoxic tumor microenvironment.47 In PDAC, the stroma is highly fibrotic, 

which creates a hypoxic tumor microenvironment and is implicated in 

tumor progression, metastasis, and treatment resistance; although it can 

have tumor restraining effects.21,48 Novel strategies targeting the stroma 

and tumor microenvironment, involving hedgehog pathway and Bruton’s 

kinase, have resulted in disappointing outcomes.49,50 Current strategies are 

focusing on targeting hyaluronic acid (HA), vitamin D receptor, and CD40 

antibody (see Table 2).

HA is abundant in pancreatic stoma; it increases interstitial pressure, impacts 

oncogenesis, and is involved in cellular signaling pathway by binding to cell 

surface receptors, such as CD44.51–53 Pegvorhyaluronidase alfa (PEGPH20), a 

pegylated version of recombinant human hyaluronidase, has been shown 

to decrease HA enzymatically, and has reestablished and improved vascular 

permeability and improved intratumoral drug delivery in a preclinical study.54 

PEGPH20 in combination with gemcitabine also resulted in higher survival 

and reduction in tumor size compared to gemcitabine alone in the same 

mouse model.54 The phase II HALO 202 trial compared PEGPH20 plus nab-

paclitaxel/gemcitabine versus nab-paclitaxel/gemcitabine regimen in 

untreated metastatic PDAC and reported improved progression-free survival 

(PFS), 6 months versus 5.3 months, respectively.55 When patients with 

HA-high tumors were analyzed, both the PFS and ORR was higher in the 

PEGPH20 plus nab-paclitaxel/gemcitabine arm, 9.2 months and 45% versus 

5.2 months and 31%, respectively. Due to a higher rate of thromboembolic 

events in the PEGPH20 plus nab-paclitaxel/gemcitabine arm, this study was 

amended after the first stage, and enoxaparin prophylaxis was implemented 

in both arms. A clinical trial with PEGPH20 plus nab-paclitaxel/gemcitabine 

versus nab-paclitaxel/gemcitabine in HA-high PDAC is ongoing (ClinicalTrials.

gov identifier: NCT02715804). Contrary to favorable outcomes with the GA 

combination, a phase I/II trial with PEGPH20 plus mFOLFIRINOX versus 

mFOLFIRINOX in untreated PDAC population was recently closed to accrual 

due to detrimental effect of OS.56

CD40 belongs to the tumor necrosis factor superfamily and is expressed  

by antigen-presenting cells as well as tumor cells.57 CD40 activation 

stimulates antigen presentation by the antigen-presenting cells, triggers 

proinflammatory cytokine release, enhances T-cell activation, and 

induces stromal depletion in both preclinical pancreatic cancer models 

and humans.57,58 The synergistic effects of CD40 agonist and cytotoxic 

chemotherapy combination has been shown in preclinical studies when 

CD40 was administered following gemcitabine.59 In another preclinical study 

with a KPC mouse model, CD40 activation redirected tumor infiltrating 

monocytes and TAMs and induced degradation of fibrosis, hence increased 

efficacy of chemotherapy.60 Interestingly, the sensitivity to chemotherapeutic 

agent was enhanced even when administered just days after CD40 

antibody, indicating rapid degradation of fibrosis in the tumor model. The 
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immunomodulatory effects of CD40 in the tumor microenvironment and 

antifibrotic properties in tumor stroma prompted further exploration of anti-

CD40 monoclonal antibodies in clinical trials (Table 2). In a phase I study 

of 22 patients with advanced PDAC, the combination of agonistic CD40 

monoclonal antibody with gemcitabine was well tolerated and achieved 

19% ORR.61

PDAC stroma expresses vitamin D receptor; in preclinical study with a KPC 

tumor model, vitamin D analogue, calcipotriol, was shown to induce stromal 

remodeling, increase intratumoral vasculature, improve intratumoral 

drug delivery, and increase anti-tumor response when combined with 

gemcitabine.62 A phase II study combining with gemcitabine, cisplatin, 

nab-paclitaxel, paricalcitol, and nivolumab is currently enrolling; preliminary 

results from 10 patients in the initial phase of the study have revealed 

80% ORR.63 A first-line placebo-controlled phase II clinical trial with the 

vitamin D agonist, paricalcitol, plus gemcitabine/nab-paclitaxel is currently 

accruing (ClinicalTrial.gov identifier: NCT03520790). Pilot studies are being 

conducted in resectable pancreatic cancer with vitamin D analogs and 

chemotherapeutic agents (ClinicalTrial.gov identifier: NCT02030860) and 

with checkpoint inhibitors (ClinicalTrial.gov identifier: NCT02930902).

Targeting DNA damage response and other pathways
Pancreatic adenocarcinoma has a complex genomic landscape and further 

molecular characterization has led identification of unique subgroups with 

different mutational features which may benefit from molecularly targeted 

therapy. Waddel et al. performed whole-genome sequencing of 100 patients 

with PDAC and demonstrated that chromosomal structure variation is a 

significant mechanism of DNA damage in PDAC.64 As such, PDAC has been 

classified into four different subtypes: stable subtype, locally rearranged 

subtype, scattered subtype, and unstable subtype. Scattered subtype has 

<200 structural abnormalities whereas unstable type has >200 structural 

abnormalities and mutations in DNA repair pathways such as BRCA1/2, 

PALB2, and ATM, which are more sensitive to platinum-containing regimens. 

A recent comprehensive genomic analysis of 456 pancreatic cancer 

cases revealed commonly mutated genes that aggregate into 10 cellular 

pathways.65 Based on gene expression, four different subtypes have been 

identified including squamous, pancreatic progenitor, immunogenic, and 

aberrantly differentiated endocrine exocrine. The gene expression features 

of these subtypes were correlated with histopathological characteristics 

and survival.

KRAS mutation is seen in 95% of PDACs and TP53, CDKN2A, SMAD4/DPC4, 

MLLSM, and RBM10 are other well-known mutations; however, the 

frequency of potentially actionable mutations with effective targeted 

therapies is much lower.66,67 Certain mutations such as NTRK gene fusions 

are highly actionable with very effective targeted therapy but NTRK gene 

fusions are detected in less than 1% of PDACs.68,69 Prominent investigational 

targeted therapy approaches include DNA repair pathways, cancer stem 

cells, metabolic pathways, and asparagine depletion.

DNA repair
Molecular subtyping of pancreatic cancer may have therapeutic implications 

as different subtypes may respond to therapy differently.70 Disrupted DNA 

damage response (DDR) is one of the hallmarks of pancreatic cancer 

development and is seen in up to 24% of PDACs,66 which also opens 

avenues for cancer treatment by utilizing synthetic lethality by targeting 

complementary DNA repair mechanisms by platinum agents and PARP 

inhibitors.71 BRCA1/2, PALB2, and ATM genes are key DNA maintenance 

genes in pancreatic cancer development.72 The majority of unstable type 

tumors have shown high BRCA mutational signature and/or unstable 

genome.64 BRCA-associated PDAC has superior survival with platinum-

containing regimens and responds better to PARP inhibitors.73 Significant 

clinical activity with an ORR of 77.8% with PARP the inhibitor veliparib in 

combination with gemcitabine and cisplatin was reported in a phase I clinical 

trial in BRCA-mutated PDAC.74 Currently, a randomized phase II trial with 

and without veliparib combined with gemcitabine and cisplatin is enrolling 

patients (ClinicalTrials.gov identifier: NCT01585805) along with several other 

trials with PARP inhibitors (Table 3). The POLO trial randomized patients 

with BRCA-mutated metastatic PDAC to olaparib versus placebo (3:2 ratio) 

as a maintenance therapy after disease stability on a platinum containing 

regimen.75 The study has achieved its primary endpoint of improvement 

in PFS, which establishes an evidence-based approach for maintenance 

therapy in platinum sensitive BRCA-mutated PDAC. DDR mutations such as 

ATM, ATR, ATRX, BAP1, BARD1, BRIP1, CHEK 1/2, RAD50/51B, FANCA/C/D2/E/

F/G/L beyond BRCA 1/2, and PALB2 are associated with improved OS when 

treated with platinum-containing regimens in advanced pancreatic cancer.76

Cancer stem cells
Cancer stem cells are highly tumorigenic, they have the ability to self-renew, 

can differentiate into heterogenous nontumorigenic cancer cell types 

comprising the tumor, are able to form spheres in stem cell media, and 

Table 2: Selected ongoing clinical trials with novel agents targeting tumor microenvironment and stroma

Mechanism of action ClinicalTrials.gov 

identifier

Agents Phase

Stromal remodeling NCT03520790 Paricalcitol versus placebo plus gemcitabine/nab-paclitaxel I/II

NCT02030860 Paricalcitol + gemcitabine/nab-paclitaxel versus gemcitabine + nab-paclitaxel N/A

NCT02930902 Paricalcitol + pembrolizumab versus paricalcitol + pembrolizumab + gemcitabine/nab-paclitaxel I

NCT02715804 PEGPH20 + gemcitabine/nab-paclitaxel versus placebo + gemcitabine/nab-paclitaxel III

NCT03481920 PEGPH20 + avelumab I

NCT03634332 PEGPH20 + pembrolizumab II

Immunomodulation and 

stromal remodeling

NCT03214250 APX005M (anti-CD40) Ab) + gemcitabine/nab-paclitaxel +/– nivolumab I/II

NCT03329950 CDX-1140 (anti-CD40) Ab) +/– CDX-301 I

NCT02588443 Neoadjuvant RO7009789 (anti-CD40) or RO7009789 + gemcitabine/nab-paclitaxel I

N/A = not applicable; Pegvorhyaluronidase alfa = PEGPH20.
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are resistant to traditional chemotherapeutic agents.77–80 A preclinical study 

with cancer stemness inhibitor BBI608, napabucasin, in a PaCa-2 pancreatic 

xenograft model, inhibited tumor growth, decreased stemness-high cancer 

cells in vivo, and down-regulated cancer stem cell proliferation and STAT3-

driven self-renewal genes as compared to gemcitabine and carboplatin.78 

In a phase Ib extension study with napabucasin and gemcitabine/

nab-paclitaxel combination, no dose limited toxicity was encountered; 

in 29 evaluable patients, a 93% disease control rate and 79.3% ORR was 

reported in previously untreated PDAC.81 In a phase Ib/II study with the same 

combination, in 55 evaluable patients, a 93% disease control rate and 55% 

ORR was reported.82 Based on these encouraging results, a phase III trial 

with nababucasin plus gemcitabine/nab-paclitaxel is currently ongoing.83

Metabolic pathways
The mitochondrial metabolism inhibitor CPI-613 targets mitochondrial 

energy metabolism in cancer cells and induces apoptosis and autophagy.84 

In a preclinical pancreatic cancer xenograft tumor model, significant anti-

tumor activity was observed.84 A phase I trial with CPI-613 combined with 

mFOLFIRINOX reported 61% ORR, with hyperglycemia, hypokalemia, and 

peripheral neuropathy being the most common grade 3–4 nonhematological 

adverse events.85 CPI-613 is being explored in a phase III trial in combination 

with mFOLFIRINOX (ClinicalTrials.gov identifier: NCT03504423) and phase I 

trial with in combination with gemcitabine/nab-paclitaxel (ClinicalTrials.gov 

identifier: NCT03435289).

Erythrocyte-encapsulated L-asparaginase (eryaspase) has emerged as 

a potential therapeutic option for PDAC. Asparagine has an essential 

role in protein and nucleotide synthesis, it also regulates apoptosis, cell 

proliferation, and is essential for survival of pancreatic cancer cells.86–88 

Asparagine synthase (ASNS) is induced by ATF4 and synthesizes asparagine 

from aspartate. Intracellular depletion of asparagine was shown to induce 

apoptosis.89 L-asparaginase depletes extracellular asparagine and it has 

anti-cancer effect on cancer cells with no or low ASNS expression.87 

Interestingly, in lung cancer preclinical models, KRAS was identified as an 

important regulator in nutrient stress response in the cell, and through ATF4 

regulation it was shown to alter asparagine biosynthesis, which is relevant 

in protein biosynthesis and apoptosis suppression.90 In the same preclinical 

study, ASNS was noted to be a key regulator of tumor cell proliferation. 

Disruption of the KRAS–ATF–ASNS pathway by inhibition of AKT sensitized 

tumor cells to L-asparaginase and was proposed as a potential treatment 

strategy in lung cancer. Eryaspase is encapsulated inside a donor-derived 

red blood cell, and anti-tumor activity by plasma asparagine depletion 

has been reported in a preclinical PDAC study.91 In a phase IIB study with 

chemotherapy +/- eryaspase, significant improvements in PFS and OS (26.1 

for chemotherapy plus eryaspase versus 19.0 weeks for chemotherapy 

alone, p=0.03) were shown regardless of ASNS expression levels.92 An 

ongoing randomized phase III trial is exploring gemcitabine/nab-paclitaxel 

or an irinotecan-based regimen with or without eryaspase in second-line 

PDAC (ClinicalTrials.gov identifier: NCT03665441).

Conclusion
Clinical management of metastatic PDAC still depends on cyctotoxic 

chemotherapy. Although prevalence of MSI-H and NTRK gene fusions 

is low in PDAC, FDA-approved molecularly targeted therapy options are 

available for this subgroup of patients. Several promising therapies are in 

development based on strong scientific rationale including combination 

therapies with immune checkpoint inhibitors, stroma modifying agents, 

targeting of TAMs, DNA repair pathways, and cancer stem cells. 
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